Plastic and Genetic Variation in Wing Loading as a Function of Temperature Within and Among Parallel Clines in Drosophila subobscura.

نویسندگان

  • George W Gilchrist
  • Raymond B Huey
چکیده

Drosophila subobscura is a European (EU) species that was introduced into South America (SA) approximately 25 years ago. Previous studies have found rapid clinal evolution in wing size and in chromosome inversion frequency in the SA colonists, and these clines parallel those found among the ancestral EU populations. Here we examine thermoplastic changes in wing length in flies reared at 15, 20, and 25°C from 10 populations on each continent. Wings are plastically largest in flies reared at 15°C (the coldest temperature) and genetically largest from populations that experience cooler temperatures on both continents. We hypothesize that flies living in cold temperatures benefit from reduced wing loading: ectotherms with cold muscles generate less power per wing beat, and hence larger wings and/or a smaller mass would facilitate fight. We develop a simple null model, based on isometric growth, to test our hypothesis. We find that both EU and SA flies exhibit adaptive plasticity in wing loading: flies reared at 15°C generally have lower wing loadings than do flies reared at 20°C or 25°C. Clinal patterns, however, are strikingly different. The ancestral EU populations show adaptive clinal variation at rearing a temperature of 15°C: flies from cool climates have lower wing loadings. In the colonizing populations from SA, however, we cannot reject the null model: wing loading increases with decreasing clinal temperatures. Our data suggest that selective factors other than flight have favored the rapid evolution of large overall size at low environmental temperatures. However, selection for increased flight ability in such environments may secondarily favor reduced body mass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wing trait-inversion associations in Drosophila subobscura can be generalized within continents, but may change through time.

Clinal variation is one of the most emblematic examples of the action of natural selection at a wide geographical range. In Drosophila subobscura, parallel clines in body size and inversions, but not in wing shape, were found in Europe and South and North America. Previous work has shown that a bottleneck effect might be largely responsible for differences in wing trait-inversion association be...

متن کامل

Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura.

Latitudinal genetic clines in body size occur in many ectotherms including Drosophila species. In the wing of D. melanogaster, these clines are generally based on latitudinal variation in cell number. In contrast, differences in wing area that evolve by thermal selection in the laboratory are in general based on cell size. To investigate possible reasons for the different cellular bases of thes...

متن کامل

Swift laboratory thermal evolution of wing shape (but not size) in Drosophila subobscura and its relationship with chromosomal inversion polymorphism.

Latitudinal clinal variation in wing size and shape has evolved in North American populations of Drosophila subobscura within about 20 years since colonization. While the size cline is consistent to that found in original European populations (and globally in other Drosophila species), different parts of the wing have evolved on the two continents. This clearly suggests that 'chance and necessi...

متن کامل

Vanishing chromosomal inversion clines in Drosophila subobscura from Chile: is behavioral thermoregulation to blame?

Chromosomal inversion clines paralleling the long-standing ones in native Palearctic populations of Drosophila subobscura evolved swiftly after this species invaded the Americas in the late 1970s and early 1980s. However, the new clines did not consistently continue to converge on the Old World baseline. Our recent survey of Chilean populations of D. subobscura shows that inversion clines have ...

متن کامل

Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura

As invading species expand, they eventually encounter physical and biotic stressors that limit their spread. We examine latitudinal and climatic variation in physiological tolerance in one native and two invading populations of Drosophila subobscura. These flies are native to the Palearctic region, but invaded both South and North America around 1980 and spread rapidly across 15° of latitude on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2004